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Abstract

Purpose — The cell-based method of domain decomposition was first introduced for complex 3D
geometries. To further assess the method, the aim is to carry out flow simulation in rectangular ducts
to compare the known analytical solutions.

Design/methodology/approach — The method is not based on equal subvolumes but on equal
numbers of active cells. The variables of the simulation are stored in ordered 1D arrays to replace the
conventional 3D arrays, and the domain decomposition of the complex 3D problems therefore becomes
1D. Finally, the 3D results can be recovered using a coordinate matrix. Through the flow simulation in
the rectangular ducts how the algorithm of the domain decompositions works was illustrated clearly,
and the numerical solution was compared with the exact solutions.

Findings — The cell-based method can find the subdomain interfaces successfully. The
parallelization based on the algorithm does not cause additional errors. The numerical results agree
well with the exact solutions. Furthermore, the results of the parallelization show again that domains
of 3D geometries can be decomposed automatically without inducing load imbalances.

Practical implications — Although, the approach is illustrated with lattice Boltzmann method, it is
also applicable to other numerical methods in fluid dynamics and molecular dynamics.
Originality/value — Unlike the existing methods, the cell-based method performs the load balance
first based on the total number of fluid cells and then decomposes the domain into a number of groups
(or subdomains). Thus, the task of the cell-based method is to recover the interface rather than to
balance the load as in the traditional methods. This work has examined the celled-based method for
the flow in rectangular ducts. The benchmark test confirms that the cell-based domain decomposition
is reliable and convenient in comparison with the well-known exact solutions.
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1. Introduction . . . . Evaluation of the
The lattice Boltzmann method (LBM) is a powerful technique for computational modeling cell-based

of a wide variety of complex fluid flows in complex geometries. Unlike the classic
computational fluid dynamics (CFD), which solves the conservation equations of
macroscopic properties numerically, LBM is a discrete computational method based on
the Boltzmann equation. It considers a typical volume element of fluid comprising a
collection of particles that are represented by particle velocity distribution functions for 657
each fluid component at each grid nodes. The particles perform consecutive propagation
and collision on a discrete lattice grid. This feature gives LBM the advantage in studying
non-equilibrium dynamics, especially in multiphase flows with micro- and meso-scale
interfacial dynamics and complex boundaries. However, the LBM needs to store particle
distribution function besides the macroscopic velocity components in the CFD, such as the
finite volume and finite difference methods. Thus, it requires more variables or computer
memory. Furthermore, solving real-world problems with computational methods often
requires large a domain in order to correctly resolve the complex geometries, or to produce
results that are accurate and free of unwanted finite size effects (Pan et al,, 2004; Shahpar
and Lapworth, 2003; Wang ef al,, 2006). With the advent of computer resources, it becomes
possible to employ parallel machines for the complex and large-scale flow problems.

To use parallel processing, the solvers must be designed to use an appropriate domain
decomposition of the computational grid. Traditionally, the domain is divided into
approximately equal subvolumes of regular slices, boxes or cubes (Desplat et al, 2001,
Giovanni et al., 1994; Amati et al,, 1997). In these strategies, the computational grid is
geometrically decomposed into approximately equal volumes. Kandhai e al (1998) and
Pan et al (2004) use the orthogonal recursive bisection method to partition the
computational box in which the computational grid is decomposed into partitions in an
orthogonal directions. Although, the approaches of the traditional equal subvolume are
successful in many engineering and scientific problems, they do not extend naturally to
the problems with solid objects or obstacles in fluid, such as porous media, carotid
bifurcation and aircrafts, in which the nodes or elements are not organized regularly into
explicit rows and columns (Kandhai ef al, 1998; Pan et al,, 2004). Consequently, load
imbalances are introduced and the behaviour of the code is affected as its overall
performance becomes restricted by that of the slowest process, especially, when many
processors are used. Some advanced methods of domain decompositions have been
developed, such as mesh graph partitioning scheme (Karypis and Kumar, 1998a, b),
dynamic mesh partitioning (Walshaw and Cross, 1999; Basermann et al, 2000). These
advanced methods still use the recursive bisection techniques to decompose domains, and
are essentially based on equal subvolume. Load balance and minimization of the edge-cut
must be obtained by using re-partitioning modules, such as mesh-migration, graph
re-partitioning. A concurrent optimization of the load balancing and minimizing edge-cut
has to be performed. Thus, these methods are computationally expensive because they
need searching and sorting computations to find the subdomain boundaries, the
extremities of the graph, or the fielder vector (Kumar et al., 1994), and some of their main
disadvantages cannot be overcome using these traditional recursive bisection. Hence,
there are three serious drawbacks involved in these advanced methods: waste memory,
irregular communication pattern, expensive computations, and coding difficulties.

In conventional CFD or lattice Boltzmann models, the workload distribution is often
proportional to the number of fluid cells (or nodes) because the solid cells do not take
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part in computations. Should the solid objects be distributed heterogeneously across
the system, it is necessary to develop a better method of domain decomposition to
ensure an efficient parallelization (Desplat ef al., 2001; Martys and Hagedorn, 2002).
Recently, a new method of domain decomposition has been introduced by the authors
for complex geometries (Wang ef al., 2005), which has been used in the very complex
geometries like porous media. However, this method was tested only in very limited
flows in porous media. Since, experimental or analytical velocity profiles in porous
media are not available, it is impossible to perform a comparison of the velocity profiles
n a rigid control condition. The modelling, discretization, round-off and iteration errors
need to be examined further because these errors may cancel each other for complex
flow in porous media structure. It is desirable to perform a rigid comparison with exact
solutions to validate the model and method. Alternatively, this can be carried out in a
well-known benchmark test problem, in which there are exact solutions of velocity
profiles. Furthermore, it can illustrate more clearly how the method works. The flow in
rectangular ducts is such a case that satisfies the above objectives.

In this paper, the method of celled-based domain decomposition is used for flow in
rectangular ducts as benchmark test. This paper is organized as follow. The first half is
self-contained, devoted a brief introduction to the new approach of domain
decomposition. The second half investigates first the parallel performance, and then
compares with the analytical solution using the LBV, followed by an evaluation of the
errors of the parallel algorithm.

2. Lattice Boltzmann methods for incompressible flows

The LBM (Chen et al., 1992; Frisch et al., 1986; Chen and Doolen, 1998) is a meso-scale
approach for CFD in which the basic idea is to solve the discretized Boltzmann
equation. These standard approaches in LBM hydrodynamics recover the
incompressible Navier-Stokes (NS) equations when spatial gradients in the lattice
density can be neglected. Since, it is practically impossible to maintain a constant
density in LBM the effect of compressibility is at least problematic to LBM simulation
and deters application of the standard LBM method for incompressible flow.

Zou et al. (1995) introduce a modified LBM method to recover the NS equations and
reinterpret the usual LBM lattice velocity and density, but it essentially adjusts the
equilibrium distribution function in a simple way to eliminate the compressibility
error. The incompressible LBM was derived in the 2D space (Zou et al., 1995) and
we extend it to 3D problems. The particle velocities and the weighting factors can be
expressed using a faced centered hypercubic lattice (D3Q19), as shown in Figure 1
(Wang et al, 2005; Zhang et al., 2002). The six nearest neighbours are connecting the
centre to the centres of the six faces of the cubes. The 12 next-to-nearest neighbours are
connecting the centre to the centres of the edges of the cubes. Thus, the lattice
Boltzmann equation can be expressed as follows:

1
filx+ &ot,t+ ob) — fi(x, 1) = — p [fitx, ) = £, 0)] ey

where 1 °Y(x, t) is the equilibrium distribution at x and a time, ¢, 8t is time step, & is the
particle velocity, and 7 is the single relaxation time which controls the rate of system
approaching to equilibrium. The equilibrium distribution function is defined by:
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where p is the density per node, and # is the macroscopic fluid velocity.

The weight factors used in the D3Q19 lattice, w;, are defined as follows:

1 A

3 Z—O,
=1k i=12 .6

1 A

% 2—7,8,...,18.

and the fluid density and the fluid velocity are calculated from:
19
p= Zf i
i=0
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Figure 1.
The face centred
hypercubic lattice (D3Q19)
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Applying the Chapman-Enskog multi-scale expansion to equations (1)-(5) gives the

continuity equation and incompressible NS equations in steady state:
Vou=0+0(5%
u-Vu = —V(c?p) + vV2u + 0(8%)

()
O

where ¢ is the speed of sound (¢ = 8x/3 1), v = (27-1)/6 and & is the size of cells in the
lattice. Apart from the errors at higher orders, O(8 %), equations (6) and (7) are exactly
the incompressible NS equations. The compressibility error induced by ignoring the

change of density in the continuity equation has been eliminated.
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3. Sparse systems

Sparse systems are the type of systems in which most of the matrix elements are zero,
such as sparse matrices, and sparse graphs. Owing to the importance of the sparse
systems, in scientific and engineering applications, the amount of literatures on parallel
algorithms for sparse system is immense. Most of them are for the computation of
sparse matrix equations. Since the locations of the nonzero elements in the matrix are
known explicitly, unnecessary multiplications and additions with zero elements should
be avoided. Hence, it is a common practice to store only the nonzero entries, and keep
track of their locations in the matrix during the computation. Although, these efficient
storage schemes for sparse matrices have been used extensively in matrix equation
calculations (Martys and Hagedorn, 2002), there are few applications of them in the
storage of spatially heterogeneous structure, such as complex geometries with solid
objects, and porous media.

Previously, it has been customary to store and the compute full lattice of the
geometries in a regular computational domain. This approach leads to a
straightforward decomposition of parallel processing implementations. However,
like sparse matrices, since the solid cells do not participate in calculations, there is no
need to store the data for them. This full lattice approach is wasteful in floating point
computation time and memory usage. In recent years, sparse approaches (Pan et al,
2004; Martys and Hagedorn, 2002; Wang et al., 2005) similar to sparse matrices have
been developed for spatially heterogeneous structures. In these approaches, only the
fluid cells (active sites) are stored and computed. At each active site, a pointer is used to
reference the data structure. At inactive sites, the pointer is NULL; and no additional
memory is allocated for the inactive sites.

4. Domain decomposition
In the proposed approach of domain decomposition, a 3D complex geometry is scanned in
a Cartesian order, starting from the z-direction and then y- and x-directions. Active
elements are counted and stored in ordered 1D arrays rather than in the conventional 3D
arrays. Thus, all the variables of the simulation that are stored in the ordered 1D arrays are
easy to be decomposed. The domain decomposition of the 3D data arrays becomes 1D. In
fact, multi-dimensional arrays are just an abstraction, as we can obtain the same results
with a simple array. Furthermore, through the scanning of the 3D complex geometry, the
solid cells have been filtered out automatically since they do not participate in calculations.
The sparse matrix approach can be integrated into the algorithm of the domain
decompositions. Since the neighbouring cells are no longer immediately known in the 1D
arrays, the definitions of their neighbours have to be imposed explicitly by using extra
integer arrays that contain the neighbours for each of the cells. Finally, the 3D results
stored the in 1D arrays can be recovered using a coordinate matrix.

For simplicity of explanation, the method of the domain decomposition is applied to
a regular rectangular duct as a benchmark test. However, the method is general and
can be easily extended to flows in complex geometries. The coordinates of the
rectangular duct are shown in Figure 2. Firstly, the total number of fluid cells are
counted and each of the variables corresponding to the fluid cells are stored orderly in
1D arrays. Then the number of the total fluid cells is divided by the number of
processors. The data domain is split into several subdomains. Each of them is handled
by a processor. The work is distributed across the processors in the domain.
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The starting and ending cells in each processor can be recovered using the coordinate
arrays. Since all the cells on interfaces between the subdomains are ranked orderly, it is
easy to obtain all the boundaries between the subdomains by using the starting and
ending cell coordinates.

A consequence of this is that there are two possibilities: the total number of the fluid
cells 1s either an exact multiple of the number of processors (no remainder) or not an exact
multiple of the number of processors (remainder). Figure 3 shows two types of interfaces,
in which the white cells belong to processor 1 and the grey cells to processor 2.
If remainders do not exist, the size of each processor is identical, and the domain is
decomposed uniformly. All the starting cells will be in the coordinate (x, 0, 0), and all the
ending cells will be in the coordinates (v, N, — 1, N, — 1), where IV, and IV, are the numbers
of cells in the y- and z-directions, respectively. Plane interfaces between the subdomains
are identical to those using conventional slice domain decomposition. Such a plane
interface is shown in Figure 3(a). However, if a remainder exists, the remainder will be
distributed further on some processors. Hence, the number of cells in some processors will
be one item longer than that in others. The starting and ending cells in the processors are
not generally on corners, but could be at any position. For this case, the starting and ending
cells are still recovered using the coordinate arrays. The coordinates of the opposite cells of
the starting and ending cells in the two neighbour surfaces are also positioned. Thus, it is
easy to recover the boundaries between the subdomains through these special cell
coordinates. Figure 3(b) shows an irregularly folded surface when a remainder exists, in
which the interface cells are marked with B. The interface is not a plane surface but a
folded surface. It should be pointed out that the boundary cells might be one extra column
(or row) more than those shown in Figure 3(a) because the diagonal neighbour cells need to
be communicated. For the present D3Q19 lattice, these extra diagonal boundary cells have
been labelled with B*.
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Figure 2.

A schematic diagram of
the simulation domain and
its coordinate axes




HFF
18,5

662

Figure 3.

Typical boundaries
between subdomains; the
white and grey cells
belong to PEO1 and PE02,
respectively: (a) the
interface when there is no
remainder; (b) the interface
when a remainder exists
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5. Data structure and memory requirements

After the total number of fluid cells is counted and each variable and its coordinates
associated with the fluid cells are stored in order in their 1D arrays. Figure 4 shows a
simple example of a 2D 4 X 7 domain distributed on two processors. In Figure 4, the
grey refers to internal cells, and the white to boundary and interface cells. The data
array structures for all the variables(velocities, distribution functions, coordinates and
neighbors) are the same. As an example, a corresponding 1D data array of variables is
also shown in Figure 4. It can be found that although different from their natural
ordering in 2D solution domain, the data in inner and interface cells are still ordering in
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the 1D array. Particularly, their interface and boundary cells are continuous in the
array. This gives regular communication patterns, and simple data structures. The
starting and ending cells on the subdomain’s boundary surfaces can be referred
automatically by moving the pointers. Hence, the data are easy to transfer in this
structure. Furthermore, subdomains that need communicate are in the nearest
neighbour, for example, processor 1 is a neighbour of processor 2.

The basic advantage of the proposed storage scheme is its simplification in
identifying each part of the domain. The physical domain can be decomposed directly
and then mapped to the computational domain. In case of solid objects immersed in the
fluid, only fluids cells are kept in memory. Owing to the consecutive and ordering
storage of the boundary cells, the expensive sorting and searching operations can be
avoided in locating the neighbour cells. The data structures do not need description of
different types of neighbors and processor index because of the advantages of nearest
communication connection, regular communication pattern, and simple data
structures. More memory can be saved compared with other sparse approaches. The
indices of neighbours are a 1-byte indicator to distinguish solid and fluid cells.

The current algorithms need more memory to store the coordinates and the
neighbours of each cell. We can compare the total memory requirements between 1D
and 3D arrays representations. For the 3D representation, the memory required by the
LBM for single-phase flow can be estimated from:

[2 X 19 X size of(float) + 4 X size of(float)|N

where N is the total number of the fluid cells in the lattice, the first term represents the
distribution functions at the 19 directions for the current and next time steps, and the
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Figure 4.

Conversion from lattice
cells to a sparse
representation and the
associated data structures
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second term represents the fluid density and the three velocity components. Assuming
8-byte for each float number, the required memory is therefore 336NV bytes.

For the 1D representation, the memory required by the LBM for single-phase flow
can be estimated from:

[2 X 19 X size of(float) + 4 X size of(float)3 X size of(int) + 18 X size of(int) |V

where the first two terms are the same as the 3D representation, and the third term is
for the x-, y-, z-coordinates indices, and the fourth term is for 18 neighbour information.
Assuming two-byte for each integer, the required memory is 378N bytes. Hence, the
memory required in 1D representation increases approximately 12.5 per cent compared
with the 3D representation. Despite the increase in storage, it is negligible in
comparison with the advantages of the 1D representation.

6. Implementation details

Numerical experiments have been performed on a Silicon Graphics Origin 2000 with
128 CPUs running at 400 MHz, equipped with 128 GB of main memory, and the
operating system IRIX 64 version 6.5.

The parallelization was accomplished within the simple single program multiple
data model. The data volume is divided into spatially continuous blocks along the
x-axis; multiple copies of the same program run simultaneously, each operating on its
own block of data. At the end of each iteration, the data for the folded surfaces that lie
on the boundaries between the blocks are passed between the appropriate processors
before the iteration is completed. By using a ghost layer of lattice cells in the
surrounding of the subdomain, the propagation step can be isolated from the data
exchange step. The ghost lattices are lattices that the processor needs to compute all its
stencils. However, the processor does not compute the ghost cells themselves. The
ghost cells are computed during the previous step by its neighbouring processors.
Before the propagation step, the processor must have received the data at the ghost
layer from the neighbours at the conclusion of the previous time step, and the data in
the interface are then sent to the ghost layer of its neighbouring processors.

Hence, the loop is first to calculate the equilibrium distribution function, £7%(x, ¢) in
equation (1), and then the collision, the term on the right hand side of equation (1).
Before the stream, the interface data between the sub-domain are exchanged. Finally,
the first term on the left-hand side of equation (1) is computed, and the stream is
performed. If convergent criteria have not been met, it returns to the first step. The loop
is cyclically carried out until the convergent criteria are met.

For data transfer, the Message Passing Interface — M.P.I. Forum (1994) has been
adopted, meaning that a group of processors, which can communicate with each other,
can be ranked by MPI from 00 up to numProcs-1 (where numProcs is the number of
processors). The MPI functions, MPI_Comm_size and MPI_Comm_rank, are used to
determine the number of processors in a given group and the rank of each processor
within the group. MPI_Send and MPI_Recv functions are used to transfer data values
of the ghost cells between the processors. These are blocking functions, and do not
return until the communication is complete. To prevent deadlocks, we authorize the
odd-numbered processors to MPI_Send first and MPI_Recv second, while for the
even-numbered processors it is MPI_Recv first and MPI_Send second. The periodic
boundary condition is handled transparently for simplification; the processor handling
the top outlet boundary of the data volume simply exchanges data with the processor



handling the bottom inlet boundary of the data volume. Finally, the global Evaluation of the

communication function, MPI_Allreduce, gathers the residuals from the processors
and broadcasts the result of the convergence check.

7. Numerical results and discussions
7.1 Computational environments
To test the proposed domain decomposition method and the parallel codes, 3D square
duct flows with the periodic boundary condition are simulated and compared with the
analytical solutions. Although several improved boundary methods have been
suggested to solve the non-slip boundary in LBM in the literatures (Zou and He, 1997,
Noble et al.,, 1995; Maier ef al., 1996; Inamuro ef al., 1995), they are not easy to extend to
3D complicated geometries. Hence, the simple bounce-back method was employed in
this work. Here, we do not take into account the I/O and the serial initialization time,
which consumes only a negligible fraction of a typical simulation in all the timing tests.
The analytical solution for the flow in an infinitely long rectangular duct, —¢ =
y=a, —b=z=)withx being the flow direction, is given by (White, 1974):

16a B i-D/2|] _ cosh(imz/2a)| cos(imy/2a)
u(y,z) = e ( )Z ;_) =D cosh(imb/2a) i3 @©)

The maximum velocity is at y = 0 and z = 0 and given by:
16a 1 1
max - 1 ¢ 1)/2 ) 9
s (3,2) = ( ) % (-1 e B ©
The velocity can be normalized by the maximum velocity, giving:

Z (=D V/2[1 — (cosh(imz/2a)/ cosh(imb/2a))| [cosimy/2a) /i°]
u(y,z) _ =135,

Unmax (Y, 2)

Z (—1)iD/2 [1 = (1/ cosh(imd/2a))] [1/:°]

1=1,3,5,..
(10)

where p represents the pressure, and ¢ and b are the width and height of the cross
section of the rectangular duct, respectively.

Thus, the non-dimensional velocity, u/um.x, 18 independent of the viscosity and the
pressure gradient. Three different values of 7, 0.9, 1.0, and 1.2, have been used in the
simulations. Because the similarity of the results, only the results with 7= 1.0 are
presented here. The criterion to determine that the steady state has reached is:

Z lue(xi, t + 1) — u(x;, D

=101 11
=1 |u(xl7t+ 1)' ( )

where the summation is over all the fluid cells. The code usually takes a few thousand
iterations to reach the steady state, depending on the viscosity and the boundary
conditions.
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7.2 Parallel performance

Two important factors are used to evaluate the efficiency of the parallelization: workload
balance and communication workload balance. The former is defined as
max (N)/ min (/V), where max (/N) is for the subdomain with the maximum number of
computational cells in all the subdomains and min{/N) for the subdomain with the
minimum number of computational cells. In the proposed method of the domain
decomposition, the maximum number of active cells for the max (/V) subdomain is one cell
more than those for the min (/V) subdomain, so the workload balance factor is (N + 1)/N,
ie.1 + 1/N.Thelatter is defined as max (/N.)/ min (/V..), where max (/V..) is the subdomain
with the maximum number of communication cells in all the subdomains, and min (V) is
the one with the minimum number of the communication cells. Likewise, we can evaluate
the communication workload factor using cell numbers on an interface. It should be
pointed out that the boundary cells might be one extra column (or row), as shown in
Figure 3(b) more than those shown in Figure 3(a) because the diagonal neighbour cells
need to be communicated. For the present D3Q19 lattice, these extra diagonal boundary
cells have been labeled with B* in Figure 3(b). Because there is the extra row which
requires to communicate for the 3D folded interface, the maximum communication
number therefore needs to add the cell number of the extra row, IV,. The communication
workload factor is (N, XN, + N;)/ (N, XN_) =1+ (1/N,). If the computational
domain is large enough, or when N and N, are larger, both the workload balance and the
communication workload factors approach to one. Thus, the work and communication
load imbalances are negligibly small.

The analysis of the parallel performance is measured using speedup S and the
efficiency £ (Kumar ef al., 1994). We define the efficiency as the ratio of the time taken
for the program to run on a single processor to the product of the number of processors
and the time for taken by the parallel program using p processors:

T T

= — E:
S Tn, Ty

(12)

where p is the number of processors, T, is the execution time for the parallelized
algorithm using p processors, and 7T is the execution time for the serial algorithm
using the a single processor.

Figure 5 shows the total execution time taken for the program to run using different
number of processors for the ducts with three different sizes. For a given duct size, the
total run time decreases nonlinearly as the number of processors increases. Figure 6
shows the speedup, in which the values of the speedups have been normalized using
the value of the single processor. The speedup tends to become saturated, and the
curve flattens. It is also apparent that the speedup increases as the size of computation
increases. The speedup saturation delays as the size of the computation domain
increases. These data agree well with Amdahl’s law. Figure 7 shows that the efficiency,
E, changes as the number of processors changes for three ducts with different sizes.
For the largest duct, the efficiency drops as the number of processors increasing.
However, for the smaller duct, 250 X 30 X 30, the efficiency oscillates around one.
This is because of the effect of the system architecture on parallel performance. In
Origin architectures, two CPUs share one memory path, thus the memory bandwidth
limits the parallel performance of LBM. A linear scaling is not expected when least
number of processors are employed. Furthermore, a parallel efficiency larger than
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The readers who are interested in the effect of system architectures can refer to
Pohl et al. (2004).
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7.3 Velocity profile comparison between the numerical and analytical results

Figure 8 shows a comparison between the numerical and analytical velocity profiles,
u/tmax. The measurements were taken at x = 100. It can be seen that the errors reduce
as the mesh is made refiner. The errors are greater near the walls than in the centre.
This is because of the effect of slip velocities at the wall on macro velocities when the
bounce-back boundary condition is used (He ef al, 1997). Hence, the errors are sensitive
to the number of the mesh cells near the walls. Further simulations have not shown
differences between the results of serial code and those of parallel code for the same
model and algorithm. The domain decomposition does not cause additional errors, and
both the results of serial and parallel codes are within machine accuracy.
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Figure 5.

Total run time versus the
number of processors for
different computational
sizes

Figure 6.

Scale-up and speed-up
measurements for
different domain sizes on
the origin 2000
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Figure 7.

The parallel efficiency, E,
versus the number of
processors for different
computational grid sizes

Figure 8.

Comparison of the
normalized numerical and
analytical velocity profiles
(t/tt,4) for the square
duct flows
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We then used the model to simulate flow in a column packed with glass beads as shown
in Figure 9. Figure 10 shows a cross-section of the simulated 3D flow field in the porous
medium. The fluid flows into the domain from the left-hand side and leave the column
from the outlet on the right-hand side. The porosity of the column was 0.37. Prescribed
pressures were applied to the left and the right sides of the column, and the other four
sides were treated as periodic boundaries. The permeability was calculated from the
simulation when the flow was deemed to have reached steady state. We also drive the
fluid flowing in other two directions to calculate the permeability. The averaged
permeability over three directions is 7.4 x 10~ ?m? This agrees well with experimental
result (Nakashima and Watanabe, 2002). The speedup is also tested for the porous
medium, as shown in Figure 11. This is in good agreement with those shown in Figure 5.
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Figure 9.

Geometry of a porous
medium packed with glass
beads with the average
bead diameter 2.11 mm

Figure 10.

A cross section of the
simulated 3D flow field in
the porous media
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Figure 11.

Speedup measurements
for different domain sizes
of the porous medium on
the origin 2000
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The reader refers to reference Wang et al. (2005), for further details of the application of
the proposed method to porous media.

8. Summary

We carried out a domain decomposition of simple rectangular ducts using a cell-based
method. This method can easily recover the interfaces between subdomains.
Furthermore, the numerical solution obtained using a combination of the proposed
domain-decomposition method and LBM was compared with the exact solutions of the
velocity profiles in the rectangular ducts. The simulation has shown that the
parallelization of LBM codes does not cause additional errors. Moreover, the simulations
do not show any difference between the results of parallel code and those of serial code
for the same LBM models. Unlike the existing methods, the cell-based method performs
the load balance first based on the total number of fluid cells and then decomposes the
domain into a number of groups (or subdomains). Each subdomain has almost the same
fluid cells in that the difference of fluid cells in each subdomain is either zero or one,
depending on if the total number of fluid cells is a multiple of the processor numbers. The
interfaces between the subdomains are recovered at last. Thus, the task of the cell-based
method is to recover the interface rather than to balance the load as in the traditional
methods. Once the total process of decomposition is completed, no further iteration is
needed.

The proposed domain decomposition is not based on equal subvolumes but on equal
numbers of active cells. The variables of the simulation are stored in ordered 1D arrays
to replace the conventional 3D arrays. Thus, the domain decomposition of complex 3D
problems becomes 1D. Finally, the 3D results can be recovered using a coordinate
matrix. An important feature of the method is that there is no load imbalance because
the number of active cells in each subdomain are equal and the domain decomposition
is performed automatically. Furthermore, it keeps the advantage of the slice
decomposition so that the dependencies between the processors are simple and the
number of interfaces between subdomains is reduced to minimum due to the nearest



connectivity of the lattice on the interfaces to communicate. Another advantage is that Evaluation of the

the memory is optimum because only the active cells of the computational domain are
stored in the memory.

The proposed approach is flexible for geometries as neighbours are defined in an
arbitrary manner and the derivation of the algorithm is general for any complex
geometries. Despite, it is illustrated with LBM, the method is also suitable for other
numerical techniques in fluid dynamics. Considering the difficulties of the domain
decomposition of complex geometries and the advantages of the 1D representation, the
presented results are encouraging although some extra storage is required for the
neighbour definitions.
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